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ABSTRACT

A new approach to estimating photometric redshifts — using artificial neural networks (ANNs) —
is investigated. Unlike the standard template-fitting photometric redshift technique, a large
spectroscopically-identified training set is required but, where one is available, ANNs produce
photometric redshift accuracies at least as good as and often better than the template-fitting
method. The Bayesian priors on the underlying redshift distribution are automatically taken
into account. Furthermore, inputs other than galaxy colours — such as morphology, angular
size and surface brightness — may be easily incorporated, and their utility assessed.

Different ANN architectures are tested on a semi-analytic model galaxy catalogue and the
results are compared with the template-fitting method. Finally, the method is tested on a sample
of ~20000 galaxies from the Sloan Digital Sky Survey. The rms redshift error in the range

2<035is o, ~ 0.021.
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1 INTRODUCTION

The basic photometric redshift technique is to use the colours of a
galaxy in a selection of medium- or broad-band filters as a crude ap-
proximation of the spectral energy distribution (SED) of the galaxy,
in order to find its redshift and spectral type. The technique is very
efficient compared with spectroscopic redshifts since the signal-to-
noise in broad-band filters is much greater than the signal-to-noise
in a dispersed spectrum and, furthermore, a whole field of galaxies
may be imaged at once while spectroscopy is limited to individual
galaxies or those that can be positioned on slits or fibres. However,
photometric redshifts are only approximate at best and are some-
times subject to complete misidentifications. For many applications,
though, large sample sizes are more important than precise redshifts
and photometric redshifts may be used to good effect.

Photometric redshifts date back to Baum (1962, see also Hogg
etal. 1998; Weymann et al. 1999). They have been used extensively
in recent years on the ultra-deep and well-calibrated Hubble Deep
Field observations (e.g. Gwyn & Hartwick 1996; Connolly, Szalay
& Brunner 1998; Fernandez-Soto, Lanzetta & Yahil 1999; Fontana
et al. 2000; Ferndndez-Soto et al. 2001; Massarotti, Iovino &
Buzzoni 2001a; Massarotti et al. 2001b). The most commonly used
approach is the template-fitting technique. This involves compiling
a library of template spectra — either theoretical SEDs from pop-
ulation synthesis models (e.g. GISSEL — Bruzual & Charlot 1993)
or empirical SEDs (e.g. Coleman, Wu & Weedman 1980, hereafter
CWW). Then the expected flux through each survey filter is calcu-
lated for each template SED on a grid of redshifts, with corrections
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for ISM, IGM and Galactic extinction where necessary. A redshift
and spectral type are estimated for each observed galaxy by mini-
mizing x? with respect to redshift, z, and spectral type, SED, where

2
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f is the observed flux in filter i, o; is the error in f;, t;(z, SED) is
the flux in filter i for the template SED at redshift z, and a(z, SED)
(the scaling factor normalizing the template to the observed flux) is
determined by minimizing equation (1) with respect to «, giving
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The template-fitting photometric redshift technique makes use of
the available and reasonably detailed knowledge of galaxy SEDs
and in principle it may be used reliably even for populations of
galaxies for which there are few or no spectroscopically confirmed
redshifts. However, crucial to its success is the compilation of a
library of accurate and representative template SEDs (see e.g. Hogg
et al. 1998; Firth 2002b). Empirical templates are typically derived
from nearby bright galaxies, which may not be truly representative
of high redshift galaxies. Conversely, while theoretical SEDs can
cover a large range of star formation histories, metallicities, dust
extinction models, etc., not all combinations of these parameters
(at any particular redshift) are realistic, and the ad hoc inclusion of
superfluous templates increases the potential for misidentifications
when using observations with noisy photometry.

An alternative approach can be used when one has a suffi-
ciently large (e.g. ~100-1000, depending on the redshift range) and
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representative subsample with spectroscopic redshifts. Then one can
fit a polynomial, or other function, mapping the photometric data
to the known redshifts and use this to estimate redshifts for the re-
mainder of the sample with unknown redshifts (e.g. Connolly et al.
1995b; Brunner, Szalay & Connolly 2000; Sowards-Emmerd et al.
2000). With this approach, errors in the estimated redshifts may also
be estimated analytically or via Monte Carlo simulations.

An extension of the latter approach is to use artificial neu-
ral networks (ANNs), which have been used before in astronomy
for, amongst other things, galaxy morphological classification (e.g.
Storrie-Lombardi et al. 1992; Naim et al. 1995; Lahav et al. 1996),
morphological star/galaxy separation (e.g. Bertin & Arnouts 1996;
Andreon et al. 2000) and stellar spectral classification (e.g. Bailer-
Jones, Irwin & von Hippel 1998; Allende Prieto et al. 2000; Weaver
2000). Essentially, an ANN takes a set of inputs (e.g. logarithms
of fluxes — i.e. magnitudes — in different filters) for each object,
applies some non-linear function, and outputs a value (e.g. the es-
timated redshift). The ANN is first trained — i.e. the coefficients
(weights) of the function are optimized — by using a training set
where the desired output is known. The ANN may then be used on
any number of other objects with similar inputs (i.e. magnitudes in
the same filter set) but unknown outputs (i.e. redshifts).

As well as using all of the information contained in the magnitudes
and colours, provided the training set is a representative subsample
of the data, the ANN will also take into account the Bayesian pri-
ors on the galaxy redshift distribution (cf. Benitez 1998; Teplitz
etal. 2001). While choosing a template library that is both sufficient
and non-superfluous is a source of concern for the template-fitting
method, ANNs automatically fit the true range of galaxy SEDs. An-
other potential advantage of ANNs relative to the template-fitting
method is that the weights applied to each filter may be more optimal
than simple y2-weighting. In addition, one can also feed in other
observational input such as image size or surface brightness, mor-
phology and concentration parameters where such data are available.
It is interesting then to see how the two methods compare.

This paper explores the use of ANNSs as a potential tool for photo-
metric redshift determination. The layout of this paper is as follows.
In Section 2 the ANNs are described and in Section 3 a semi-analytic
model (used to provide a simulated galaxy catalogue) is introduced.
In Section 4 the ANN parameters (architecture and training set size)
are investigated using the simulated galaxy catalogue and in Section
5 the performance of ANNs are compared with the performance of
the traditional template-fitting method. Section 6 looks at the effect
of photometric noise and in Section 7 ANNSs are investigated as a
method for also determining spectral type from redshifted data. In
Section 8, ANNs are tested on Sloan Digital Sky Survey observa-
tional data. The science prospects are briefly discussed in Section 9.

2 ARTIFICIAL NEURAL NETWORKS

An ANN comprises a set of input nodes, one or more output nodes,
and one or more hidden layers each containing a number of nodes
(Fig. 1; see e.g. Bishop 1995, and references therein, for back-
ground). A particular network architecture may be denoted by Ny, :

number of nodes in the first hidden layer, and so on. For example
9:6: 1 takes 9 inputs, has 6 nodes in a single hidden layer and gives
a single output. The nodes are connected and each connection car-
ries a weight comprising the vector of coefficients w that are to be
optimized. Unless otherwise stated, every node is here assumed to
be connected to every node in the previous layer and to every node

Input layer —> Hidden layer — Output layer

m,

bias

Figurel. A schematic diagram of an ANN with input nodes taking, for
example, magnitudes m; = —2.5 log 19 f; in various filters, a single hidden
layer, and a single output node giving, for example, redshift z. The archi-
tecture is n: p: 1 in the notation used in this paper. Each connecting line
carries a weight w;. The bias node allows for an additive constant in the net-
work function defined at each node. More complex nets can have additional
hidden layers.

in the next layer only, but it is certainly possible to have more or
less interconnected nets. The input parameters for each object are
represented by the vector x (e.g. the magnitudes in a set of filters).
Given a training set of inputs x; and desired outputs z; (e.g. the
redshifts), the ANN is optimized by minimizing the cost function

1
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The function F(w, x;) is given by the network. A function g, is
defined at each node p, taking as its argument

p = wjx;, &)
J

where the sum is over the input nodes to p. These functions are
typically taken (by analogy with biological neurons) to be sigmoid
functions such as g,(u,) = 1/[1 + exp (—u,)] (used here). An ex-
tra input node — the bias node — is automatically included to allow
for additive constants in these functions. The combination of these
functions over all the network nodes makes up the function F. A
programme kindly provided by B. D. Ripley was used to train the
networks. The programme takes as its input a network architecture,
a training set and a random seed to initiate the weight vector, w,'
and uses an iterative quasi-Newton method (see e.g. Bishop 1995)
to minimize the cost function. To ensure that the weights are regu-
larized (i.e. that they do not become too large), an extra quadratic
cost term

1 2
szﬂizwjv (5)
J

was added to equation (3). A value of § = 0.0001 was chosen
empirically to optimize the ANN performance. After each training
iteration, the cost function is evaluated on a separate validation set.

! The initial weights were randomly chosen from a uniform distribution with
range [—0.7, 0.7].
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After a chosen number of training iterations, training terminates and
the final weights chosen for the ANN are those from the iteration
at which the cost function is minimal on the validation set. This is
useful to avoid over-fitting to the training set if the training set is
small.

3 MODEL GALAXY CATALOGUES

3.1 Semi-analytic models

To provide a galaxy catalogue on which to train and test ANNs, a
semi-analytic model was used. Semi-analytic models are an attempt
to use simple recipes to parametrize the main physical processes of
galaxy formation within the hierarchical paradigm of galaxy for-
mation (see, for example, Kauffmann, White & Guiderdoni 1933;
Cole et al. 1994). In these models, Monte Carlo techniques may
be used efficiently to generate large mock galaxy catalogues with a
(broadly-speaking) realistic distribution of galaxy types, luminosi-
ties, colours and redshifts. Here, the current version of the code
developed by Somerville (1997) is used. This has been shown to
produce good agreement with many properties of local and high-
redshift galaxies (Somerville & Primack 1999; Somerville, Primack
& Faber 2001; Firth et al. 2002a).

In this model (see Somerville & Primack 1999, for details), the
number density of haloes of various masses at a given redshift is
determined by an improved version of the Press—Schechter model
(Sheth & Tormen 1999) and the formation and merging of dark mat-
ter haloes as a function of time is represented by a ‘merger tree’. The
cooling of gas, formation of stars, and reheating and ejection of gas
by supernovae within these haloes are modelled by simple recipes.
Cold gas is assumed to cool initially into, and form stars within, a ro-
tationally supported disc. Major mergers between galaxies destroy
the discs and create spheroids. Galaxy mergers also produce bursts
of star formation. The chemical evolution and star formation his-
tory of each galaxy is traced and convolved with multi-metallicity
stellar population synthesis models (Devriendt, Guiderdoni & Sadat
1999), and a dust extinction law, in order to calculate the galaxy’s
SED.

There are several advantages in using a semi-analytic model here.
First, an arbitrarily large number of galaxies may be generated over
any desired redshift range, and with any magnitude limit. The ‘true’
redshift and magnitudes (prior to the addition of photometric noise)
are known precisely. At present there is no large observed spectro-
scopic sample at high redshift, and those spectroscopic samples that
do exist tend to be biased towards luminous galaxies with prominent
emission lines at optical wavelengths. On the other hand, simpler
model galaxy catalogues (e.g. PLE models) are less likely to pro-
duce realistic distributions of galaxy SEDs in terms of composite
stellar populations, ages, metallicities and the effects of dust (all as a
function of redshift). Where (when) suitable spectroscopic samples
exist, the model catalogues could be replaced by observed photo-
metric and spectroscopic samples and the results would be expected
to be comparable (see, for example, Section 8).

3.2 Preparing the input catalogue

An H < 22 catalogue in UBV RIH was generated using the semi-
analytic model. To simulate a real galaxy survey, photometric noise
was added to this catalogue, simulating 5-0 magnitude limits of U =
25.1,B=26.6,V =26.1, R =25.6,1 =24.7 and H = 20.5 (typical
of current and future large surveys aimed at studying large-scale
structure at high redshifts —e.g. the LCIR Survey, Firth et al. 2002a).
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An extra 0.05 mag rms error term was included to simulate seeing
variations, zero-point inaccuracies and other sources of photometric
errors. Finally, an H < 20.5 ‘noisy’ sample was drawn from this
catalogue.

So that all weights are treated fairly equally in equation (5), it
is useful to normalize the magnitudes in each filter and the model
redshifts to the range [0, 1]. The exact form of the normalization
is unimportant provided the same normalization is used for both
training and using the ANN. For definiteness, in each filter the
mean magnitude (derived from an H < 20.5 ‘noiseless’ sample)
was subtracted, and the range [—5, 5] was mapped linearly to [0,
1]. Furthermore, the redshift range [0, 3.5] was mapped linearly to
[0, 1].

4 SELECTING NETWORK PARAMETERS

4.1 Number of training iterations

First of all, the required number of training iterations, Nje;, was
investigated. Clearly this will depend on the characteristics of the
data set and the complexity of the network architecture. There is also
an element of chance due to the randomized initial weights. After
an ANN has been trained, its performance is assessed by running a
testing set through it (distinct from the training and validation sets)
and calculating the rms of A; = Zyodel — Zphot» Where Zmoger are the
model redshifts and zyo are the corresponding ANN photometric
redshifts. Fig. 2 plots the change in rms as N, is increased. Three
architectures, covering a range in complexity, are compared and, for
each architecture, five ANNs were produced starting with different
random seeds. A training set of size 10 000 was used (cf. Section 4.3)
and the ANNs were tested on a separate testing set, also of size
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Figure 2. Therms of A; = Zmodel — Zphot (measured on 10 000 test galaxies)
as a function of the number of training iterations for three ANN architectures
(indicated at the upper right of each panel). For each architecture, five ANNs
were trained, each initialized with a different random seed. A training set of
size 10 000 was used.
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Figure3. Comparison of photometric redshifts (using 2000 test SAM
galaxies) for two ANNs initialized with different random seeds. A
6:10:10:10: 1 network architecture, 10000 training galaxies and 1000
training iterations were used. The rms of A, = z; — z7 is 0.065.

10 000. Note that the testing set could be any size. A sample of size
10 000 was chosen simply to provide good statistics.

The rms decreases as Ny, is increased but levels off for large
Njier. For most random seeds, improvement beyond Ny, ~ 500 is
slow. For the remainder of this paper, in which a similar range of
architectures, and the same — or simpler — data sets are considered,
Nier Will be restricted to 1000.

Fig. 3 compares the estimated photometric redshifts on the testing
set,usingthe 6: 10: 10: 10 : 1 architecture, for two different random
seeds after 1000 training iterations. The two ANNs closely agree.
Generally, different initial random seeds lead to ANNs with similar
rms accuracy, though there are still differences at the <10 per cent
level. Itis useful, therefore, to generate several ANNs using different
random seeds. One may then use the validation set to choose the
‘best” ANN. A better approach (see e.g. Bishop 1995 for details) is
to combine a set of ANNs generated using different random seeds.
This is called a ‘committee of ANNs’. In this paper, the estimated
redshift for each galaxy presented to the committee is taken to be the
median of the estimates provided by the individual ANNs. Typically,
the committee gives more accurate redshift estimates than any of its
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Figure4. Photometric redshift versus model redshift comparisons (using
2000 test galaxies) for several network architectures (indicated at the upper
left of each panel). The simulated SAM catalogue is H < 20.5 with 5-0
limits U = 25.1, B =26.6, V =26.1, R =25.6, ] =24.7 and H = 20.5.
A committee of 5 ANNS (for each architecture) and a training set of 10 000
galaxies were used. Note the increased scatter at high-redshift where there
are fewer training galaxies. The quantization at 0.1 intervals in z is due to
poor redshift-space resolution in the colour grid used to determine galaxy
colours in the semi-analytic model.

component ANNSs taken individually (see Section 4.2, Table 1 for
examples).

4.2 Network architecture

More complex network architectures have more free parameters
(weights) and therefore allow a closer fit to the data. In any real
data set there will be a fundamental limit to the rms fit (due to
random noise in the input measurements), and further increases in
architecture complexity will provide no significant improvement. In
addition, architectures with more weights take longer to train. In any
given situation one would like to use the simplest network possible
while still obtaining optimal results.

Table 1 compares the rms of A, = Zmogel — Zphot» €Valuated on a
testing set of size 10 000, for several architectures (see also Fig. 4).

Tablel. The mean and rms of A; = Zmodel — Zphot for various network architectures. The simulated SAM
catalogue is H < 20.5 with 5-¢ limits U = 25.1, B = 26.6, V = 26.1, R =25.6, ] =247 and H = 20.5. A
training set of 10 000 galaxies was used. Columns 3 and 4 display mean values for five ANNs initialized with
different random seeds. Columns 5 and 6 display values for a single committee comprising five ANNs (initialized
with different random seeds). Note that a committee produces significantly better results than its component ANNs.

Network Individual ANN Committee
architecture N weights mean A, rms of A, mean A, rms of A,
6:3:1 25 —0.005 0.192 —0.004 0.187
6:6:1 49 —0.005 0.159 —0.004 0.151
6:10:1 81 —0.004 0.148 —0.005 0.142
6:15:1 121 —0.003 0.146 —0.004 0.140
6:20:1 161 —0.004 0.145 —0.004 0.140
6:30:1 241 —0.003 0.140 —0.003 0.136
6:40:1 321 —0.003 0.143 —0.003 0.139
6:6:6:1 91 —0.002 0.133 —0.002 0.124
6:6:6:6:1 133 —0.001 0.123 —0.000 0.116
6:10:10:1 191 —0.001 0.124 —0.000 0.116
6:10:10:10:1 301 —0.000 0.119 0.000 0.113
6:10:10:10:10:1 411 0.000 0.119 0.000 0.113
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For committees of five ANNs, the networks with a single hidden
layer (i.e. 6:m:1) reach a limiting rms of ~0.14 (e.g. for m ~
15). There is no significant improvement for larger m. However,
adding extra hidden layers offers some improvement, even when
the total number of weights is not increased. The committees of five
6:6:6:6:1,6:10:10:1 and 6:10:10:10:1 ANNs in Table 1
all produce rms values of ~0.115. The scatter in the rms between
different committees is of order +=0.002 for these architectures, and
increasing the number of ANNs in the committee leads only to a
small improvement in the rms (e.g. ~0.001 decrease in the rms
for a committee of 25 ANNSs). Adding further hidden layers (e.g.
6:10:10:10:10:1) leads to little or no further improvement.

For the remainder of this paper, a 6:6:6:6: 1 architecture will
be used as the fiducial ANN, since this architecture gives results
comparable with the best results in Table 1 but has relatively few
weights. Unless stated otherwise, redshifts will be estimated using a
committee of five such ANNs — taking the median redshift estimate
of five for each galaxy.

Clearly, the required network complexity depends on the data set.
For data with a higher signal-to-noise ratio, the fundamental rms
limit on A, will be lower and a more complex architecture may be
necessary to reach this limit. Conversely, for data covering a smaller
redshift range, fewer free parameters will be necessary to model the
mapping from colours to redshift, and a simpler architecture may
suffice.

4.3 Size of training set

Often one will have no choice concerning the size of the training
set, Nain. However, when designing surveys, it is useful to assess
what size of training set is necessary to provide a given redshift
accuracy. Fig. 5 plots the rms of A; = Zmodel — Zphot» €valuated on a
testing set of size 10 000, as a function of N, forthe 6:6:6:6: 1
architecture (using a single random seed). The rms decreases as
N wain increases but begins to level off for large Ny, values. Clearly
there is a trade-off — one can obtain fairly good results for quite small
training sets (e.g. rms ~0.15 for N, = 1000) but larger training
sets can give significant improvements (e.g. rms ~0.12 for N, =
10 000).

0.5E
0.4

0.3

in A,

0.2

r.m.s.

0.1

0.0 I
100 1000 10000

training set size

FigureS. Photometric redshift accuracy as a function of training set size
N train- The plot shows the rms of A; = Zmodel — Zphot, €valuated on 10 000
test galaxies. The simulated SAM catalogue is H < 20.5 with 5-¢ limits
U =251, B =266V =261, R=256,1=247and H = 20.5. A
6:6:6:6: 1 network architecture (with a single random seed) was used. For
Nrain < 10000, up to 10 ANNs were generated using separate training sets;
points and error bars show, respectively, medians and interquartile ranges
for the different ANNs.
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Figure 6. A comparison of ANN and HYPERZ photometric redshifts with
model redshifts on 2000 test galaxies. The simulated SAM catalogue is H <
20.5 with 5-¢ limits U = 25.1, B =26.6, V = 26.1, R = 25.6, [ =24.7
and H = 20.5. A committee of five 6:6:6:6:1 ANNs and a training set
of 10000 galaxies were used. Eight Bruzual & Charlot GISSEL’98 evolving
SEDs were used as templates in HYPERZ with Ay in the range 0.0-1.2.

Also plotted in Fig. 5 are the rms values for different redshift
bins: z < 0.5,0.5 < z < 1.0 and z > 1.0. In the testing set, galaxies
are distributed between these bins in the approximate ratio 2:2: 1.
Since there are fewer training galaxies in the high-redshift bin, the
network weights are less constrained and the rms values are larger.
From N i, = 200 to Nin = 5000, the rms in the z < 0.5 bin
drops by about 20 per cent while the rms in the z > 1.0 bin drops
by more than 50 per cent. Thus larger training sets are important
for tying down the redshifts of rare objects, but if this is not of
particular interest (e.g. many large-scale structure surveys) then one
can manage with smaller training sets.

It is important to note that the size of N, required to achieve a
given accuracy depends on the variation inherent in the data set. In
particular, for photometric redshifts it depends on the redshift range.
In Sections 5-7,in which the same H < 20.5-SAM catalogue is used,
the training set size will be fixed at 10 000. For low-redshift/shallow
surveys (e.g. SDSS — see Section 8), smaller training sets should
suffice.

5 COMPARISONS WITH THE
TEMPLATE-FITTING METHOD

Fig. 6 compares the model redshifts of 2000 test galaxies with the
redshifts estimated using a committee of five 6:6:6:6:1 ANNs
and a training set of 10 000 galaxies. As found in Section 4, the rms
of A, = Zmodel — Zphot 18 0.12 over the redshift range 0 < z < 3.5.
Of course, the performance depends entirely on the particular set of
filters and limiting magnitudes? so, for comparison, the results of the
template-fitting code HYPERZ® (Bolzonella, Miralles & Pellé 2000)
are also shown (using the eight synthetic Bruzual & Charlot 1993
GISSEL’98 evolving templates, which are distributed with HYPERZ,
and dust extinction Ay in the range 0.0-1.2). The HYPERZ results
are comparable but slightly worse. Formally, the rms of A, is 0.26,
but this relatively high value may be due more to the small number
of complete misidentifications — against which the ANN seems to
be more robust — than to a general increased scatter. However, as
a further comparison, the scatter measured by the half-range of the

2 The sample catalogue is of much poorer quality than the Hubble Deep
Field, for example.
3 http://webast.ast.obs-mip.fr/hyperz/
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Figure7. A comparison of ANN and HYPERZ photometric redshifts with
model redshifts on 2000 test galaxies. The simulated catalogue is H <
20.5 with 5-o limits U =25.1, B =26.6, V =26.1, R =25.6, ] =24.7 and
H =20.5. Prior to adding photometric noise, the photometry for each galaxy
in the semi-analytic model catalogue was replaced with the photometry of
the best-fitting of four empirical CWW template spectra (E, Sbc, Scd or Im)
at the same redshift. A committee of five 6:6:6:6: 1 ANNs and a training
set of 10 000 galaxies were used. The four CWW SEDs themselves were
used in HYPERZ.

central 68 per cent A, values is 0.02 for the ANN and 0.11 for
HYPERZ.

It may be argued that HYPERZ is at a disadvantage here, relative
to the ANN, since the ANN training and testing sets are based on
the same spectral models while HYPERZ is trying to fit a different
set of templates. For a real data set, HYPERZ — like all template-
fitting methods — could still suffer from template mismatches while
ANNs automatically fit the data. Synthetic templates were used in
HYPERZ for the above comparison since synthetic templates, albeit
from a different source, are used in the semi-analytic model. How-
ever when using HYPERZ on real data sets, empirical SEDs, such
as the four CWW SEDs — E, Sbc, Scd and Im — distributed with
the HYPERZ code, often produce better results. It is possible that
the four CWW templates are a closer match to real galaxy SEDs
than the eight GISSEL’98 evolving templates are to the semi-analytic
model SEDs. Therefore as a further comparison, which maximally
favours HYPERZ, the UBV RIH photometry for each galaxy in the
semi-analytic model was replaced by UBV RIH photometry for the
best-fitting (using rest-frame B—/ colour) CWW template SED at
the same model redshift. Noise was added to the new photometry
as described above and an H < 20.5 sample was reselected. The
magnitudes and redshifts were normalized as described above and
a new committee of five 6:6:6:6:1 ANNs was generated. Fig. 7
compares the new ANN with HYPERZ. The formal rms of A, is 0.10
for the ANN and 0.12 for HYPERZ, while the half-width of the cen-
tral 68 per cent A, values is 0.02 for the ANN and 0.04 for HYPERZ.
Hence, even for this case maximally favouring HYPERZ, the ANN
performs at least as well as template fitting.

6 SCATTER DUE TO PHOTOMETRIC ERRORS

It is of interest to see what the distribution of estimated redshifts
is for a particular galaxy, as a result of random photometric errors.
Random noise was added, as described above, to a selection of in-
dividual model galaxies, with 1000 random simulations per galaxy.
Then redshifts were estimated using the above previously-trained
committee of five 6:6:6:6: 1 ANNS. Fig. 8 plots histograms of the
estimated redshifts for each original galaxy. The width of the P(z)
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Figure8. Eight galaxies were selected from the original ‘noiseless” SAM
catalogue. Random photometric noise was added simulating 5-0 limiting
magnitudes U = 25.1, B =26.6,V =26.1, R=25.6,1 =247 and H =
20.5, with 1000 simulations per initial galaxy. The plots show histograms
(one for each of the original eight galaxies) of the redshifts estimated with
the committee of five ANNSs previously trained on the full ‘noisy’ H < 20.5
training set (as in Section 5). The upper four panels are for bright (H ~ 19.5)
galaxies while the lower four panels are for faint (H ~ 20.5) galaxies. The
arrows indicate the true (model) redshift of each galaxy.

distribution increases for fainter galaxies but a more pronounced
trend is that it increases for galaxies at higher redshifts. There are
fewer training galaxies at high redshifts which means that (a) the
network weights are less constrained than at lower redshifts, and
(b) the training process gives more weight to improving the accu-
racy for the majority of galaxies at low redshifts at the expense of
accuracy at high redshifts.

7 SPECTRAL TYPE CLASSIFICATION

One can also use ANNSs to determine spectral type (independently
of redshift) provided, as emphasized above, the training set is rep-
resentative in terms of both spectral types and redshifts (and hence
galaxy colours). As in Section 5, the photometry for each semi-
analytic model galaxy was replaced by that for the best-fitting CWW
template SED at the same model redshift. Then simulated photo-
metric noise was added and an H < 20.5 sample was selected. The
best-fitting CWW spectral types E, Sbe, Scd and Im give the desired
output on which the network is trained.

Since the input colour data is the same as in the photometric red-
shift problem of Section 4, a similar network architecture was used.
However it was modified to produce four outputs (viz.6:6:6:6:4),
corresponding to the four spectral types (at any redshift).* When
training, the desired output is 1 for the output node corresponding
to the correct type and 0 for the other three nodes. When a galaxy of
unknown spectral type is run through the ANN, the output in each
node may be treated approximately as a probability for the galaxy
being of the corresponding type, and the galaxy is assigned the type
for which the probability is greatest (cf. e.g. Storrie-Lombardi et al.
1992; Lahav et al. 1996). The input magnitudes were normalized to
the range [0, 1] as above, 10 000 training objects were used, and a
committee of five 6:6:6:6:4 ANNs was generated.

4 Alternatively, since galaxy spectral types roughly follow a sequence (e.g.
Connolly et al. 1995a; Naim et al. 1995), one could utilize a network with
a single output node to classify galaxies, for example, on a scale of O to 1,
where 0 corresponds to spectral type E and 1 corresponds to spectral type
Im.
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Table2. Comparisons of the efficiency with which ANNs and HYPERZ re-
cover galaxy spectral types. The simulated catalogue is H < 20.5 with 5-0
limits U = 25.1, B =26.6, V =26.1, R =25.6, I =24.7 and H = 20.5.
A committee of five 6:6:6:6:4 ANNs and a training set of 10 000 galaxies
were used.

Estimated SED HYPERZ ANN

E Sbc  Scd Im E Sbc  Scd Im
true SED
E 428 1 0 0 422 6 0 1
Sbc 9 743 1 0 3 747 3 0
Scd 0 3 383 0 0 1 382 3
Im 0 0 9 423 3 1 7 421

The ANN results are displayed in Table 2. The ANN spectral types
agree very well with the original CWW spectral types — the mean
error rate is ~1 per cent. Table 2 also shows the equivalent HYPERZ
results. Here the ANN and HYPERZ perform comparably well.

8 PERFORMANCE OF NEURAL NETWORKS
ON SDSS DATA

The Sloan Digital Sky Survey® (SDSS; York et al. 2000) consortium
have now publicly released more than 50 000 spectroscopic redshifts
along with ugriz photometry and various image morphological pa-
rameters. These provide an excellent opportunity to test ANNs on
real data (see also Sowards-Emmerd et al. 2000 for a polynomial-
fitting approach). Objects were selected from the SDSS public data
set using the following criteria: (1) the spectroscopic redshift confi-
dence must be greater than 0.95 and there must be no warning flags;
(2) r < 17.5; (3) redshift <0.5. Stars were left in with the galax-
ies but at these magnitudes they could have been fairly robustly
removed using image morphology. The order was randomized and
the magnitudes, redshifts and other parameters were normalized to
the range [0, 1].

Because the SDSS redshift range is much smaller than that of the
SAM catalogue used in Section 4 (though note the addition of stars
here), a simpler architecture may suffice. However, for the sake of
simplicity, a similar architecture is used in this section also. Two
ANN architectures were used. One —5:6:6:6: 1 — inputing ugriz
photometry, and the other — 8:6:6:6: 1 — inputing ugriz photom-
etry and the SDSS pipeline star/galaxy classifier (‘type’) and Pet-
rosian 50 per cent and 90 per cent r-band flux radii, rso and rgj.
A training set of size 10000 was used and, for each architecture, a
committee of five ANNs was generated.

Fig. 9 compares the ANN redshifts with spectroscopic redshifts
foratesting set of 7000 galaxies. The rms’s of A are 0.023 and 0.021
for committees of five 5:6:6:6:1 and 8:6:6:6: 1 networks, re-
spectively, while the mean offsets are both 0.000. These results are

3 Funding for the creation and distribution of the SDSS Archive has been
provided by the Alfred P. Sloan Foundation, the Participating Institutions,
the National Aeronautics and Space Administration, the National Science
Foundation, the US Department of Energy, the Japanese Monbukagakusho,
and the Max Planck Society. The SDSS Web URL is http://www.sdss.org/.
The Participating Institutions are The University of Chicago, Fermilab, the
Institute for Advanced Study, the Japan Participation Group, Johns Hop-
kins University, the Max-Planck-Institute for Astronomy (MPIA), the Max-
Planck-Institute for Astrophysics (MPA), New Mexico State University,
Princeton University, the United States Naval Observatory, and the Uni-
versity of Washington.
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Figure9. A comparison of photometric and spectroscopic redshifts us-
ing SDSS public data. Two ANN architectures were used, taking as input
ugriz photometry (5:6:6:6:1 architecture, left) and ugriz photometry, SDSS
star/galaxy classifier and Petrosian 50 and 90 per cent r-band flux radii
(8:6:6:6:1 architecture, right). A training set of size 10 000 was used. The
ANN s were tested on a separate testing set of size 7000 (plotted). In each
panel, redshift estimates are medians from a committee of five ANNs.

easily as good as, and probably better than, the best results that
template-fitting photometric redshift methods can produce. There
are also very few outliers. The spike at z =0 inthe 5:6:6:6:1
network results is due to misidentified stars. In the 8§:6:6:6:1
network, the addition of morphological parameters largely removes
this feature.

While 10 000 training objects were used for the above networks,
one can still do fairly well with much smaller training set sizes. For
example, with only 500 training objects, the rms values become,
respectively, 0.028 and 0.027 (cf. Fig. 5). Again, larger training sets
are expected to be useful for pinning down the classifications of rare
objects — e.g. the rms in the redshift range 0.25 < z < 0.35 is ~0.03
for N i = 10 000 but degrades to ~0.06 for N g, = 500.

9 CONCLUSIONS

ANNSs can produce photometric redshift accuracies that are compa-
rable with, or better than, template-fitting procedures. However they
do rely on large and representative training samples and an ANN
is only applicable to the particular survey filters and redshift range
upon which it has been trained. For large photometric/spectroscopic
surveys, such as the SDSS and future deeper surveys such as DEEP2°
and the VIRMOS-VLT Deep Survey7 (VVDS; Le Fevre et al. 2000),
where large spectroscopic samples are available, it seems that ANNs
offer some significant advantages over previous approaches. The
VVDS, for example, is expected to include >100 000 redshifts to
14 = 22.5, >40000 redshifts to /4,5 = 24 and > 1000 redshifts to
I, = 25, providing ample training set sizes for the complementary
deep imaging in UBVRIK to I, = 25 (similar to the limits used in
Section 3).

With careful modelling of photometric errors and some loss in
the Bayesian statistics, bright spectroscopic samples may also be
extrapolated to provide training sets for fainter photometric samples.

In addition, ANNs may also be used where spectroscopic red-
shifts are unavailable, by utilizing a simulated catalogue (e.g. semi-
analytic model) as a training set. By using theoretical SEDs in the
training set, this method has all the disadvantages and advantages

6 http://astron.berkeley.edu/~marc/deep/
7 http://www.astrsp-mrs.fr/virmos/
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of standard template fitting, but it also has the extra advantages (i)
the ‘template’ SEDs include a (more or less) realistic distribution of
complex star formation histories, dust modelling and metallicities,
etc., giving fully Bayesian statistics, and (ii) the weights applied to
different filters (and non-linear combinations thereof) may be more
optimal than simple x2-weighting.

To conclude, while template-fitting photometric redshifts may be
used to good effect in pioneering studies of new populations of ob-
jects, spectroscopic confirmation will always be necessary to obtain
truly robust scientific results. Instead, the real power of photometric
redshifts lies in extending small very resource-intensive faint spec-
troscopic surveys to much larger fields of view and sample sizes.
That is to say, the area where photometric redshifts can best be used
for robust and useful scientific gain is in the training-set regime.
ANNSs provide a powerful tool for obtaining high-quality photo-
metric redshifts in such surveys.
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